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The possibility of chaotic regimes intentional initiations in attitude dynamics of multi-

spin spacecraft and gyrostat-satellites basing on the activation of the homo/heteroclinic 

chaos and/or strange chaotic attractors is shown. The new simple dynamical system with 

the new chaotic strange attractor is found basing on the main dynamics of spacecraft and 

the Newton-Leipnik system. Considered intentional initiations of chaotic regimes can be 

applied to the attitude reorientation of multi-spin spacecraft in cases of extreme 

dynamical situations including accidents and failures of main attitude control systems, 

and/or in cases of cancellations of uncontrolled rotations.  

1.   Introduction  

This paper represents the expanded description of the method of chaotic 

attitude control/reorientation [1] of spacecraft with multi-rotors gyroscopic 

systems, including constructional schemes of dual-spin spacecraft (DSSC) and 

multi-spin spacecraft (MSSC), which also can be called as unbalanced gyrostat-

satellites (GS). In an addition to the case of using the homo/heteroclinic chaos as 

the driver of attitude reorientations (that was considered in the previous paper 

[1]), this work describes the extension of this method basing on dynamical 

properties of strange chaotic attractors, which can be generated in a phase space 

of spacecraft dynamics.  

The main feature of the chaotic attitude reorientation of the DSSC/MSSC in 

the inertial space is the initiation of the transient chaotic regime which allows to 

implement the attitude/angular motion with sufficiently large spatial angles (the 

Euler angles, or Tait–Bryan/Cardan angles, etc.). Generally speaking, to obtain 

the new spacecraft’s attitude we should involve DSSC/MSSC into the transient 

chaotic motion, and after coming into the new area of the phase space we should 

deactivate the chaotic regime (by removing the disturbing internal 

torques/forces) and proceed to the regular motion of DSSC/MSSC with new 

attitude and dynamical parameters.  

So, we can consider the initiated chaotic dynamical regime as “a switch” for 
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the commutation of two different regular regimes of systems dynamics (at all, 

and, in particular, in the connection to attitude dynamics of spacecraft). 

2.   The spacecraft attitude reorientation/control based on the 

intentional initiation of heteroclinic chaos 

2.1.   Mathematical models of the angular motion of DSSC 

As it was indicated in [1], the main dynamical system (the motion 

mathematical model) for the free DSSC (Figure 1) motion can be written in the 

form of dynamical and kinematical Euler equations: 

 
   

 

2 2
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0; ;
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p q p q

r p q
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where  , ,
T

p q r   are components of the absolute angular velocity of the 

platform-body (the body # 2) in the connected frame Oxyz,    is the relative 

angular velocity of the rotor-body (the body # 1), and is  the rotor’s relative 

rotation angle;  1
;C r   
 1 2

,A A A 
 1 2

;B A B 
 

 1 1 1
, , ,diag A A C

 

 2 2 2
, ,diag A B C  are the inertia tensors of the DSSC bodies in the own 

connected frames, M

  the internal torque of the rotor-engine; also here the 

Euler angles are used:  - the nutation,  - the precession,  - the intrinsic 

rotation. If we direct the inertial axis OZ along the constant vector of the DSSC 

angular momentum K, then the well-known Serret-Andoyer variables can be 

linked with angular momentums’ components and with Euler angles by the 

following manner: 

 2 2
; ; cos ;L C r I K L K l       K

 (3) 

 
2 2 2 2

2 2 2
sin ; cos ;

x y z
K Ap I L l K Bq I L l K C r L        

 (4) 

where K is the DSSC angular momentum. Then, in the Serret-Andoyer variables 

we have the well-known Hamiltonian form: 
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 (5) 

where H0 – the “generating” Hamiltonian part, H1 – a perturbed part of the 

Hamiltonian and  – small dimensionless parameter corresponding to 

perturbations. 

 

 
 

Figure 1.The dual-spin spacecraft and coordinates systems 

 

Taking into account (5) we have the following equations for the positional 

part of the Serret-Andoyer coordinates (l, L): 
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 (6) 

2.2.   The method of attitude reorientation based on the initiation of 

homo/heteroclinic chaos  

From the last equation (1) the formal exact solution follows: 

 0

( )

t

t M dt


    
 (7) 
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At absence of perturbations  1
0, 0M


 H  we will have the torques free 

motion with corresponding “generating” regular homo/heteroclinc solutions [2-

4], which can be applied to the homo/heteroclinic chaotic regimes investigation. 

And, as it is known, the homo/heteroclinic chaos will arise in the DSSC 

dynamical system at the action of small harmonic internal torque 

 cosM t 

  [2, 4] due to homo/heteroclinic separatrix splitting-intersecting; 

also as the effect of separatrix splitting-intersecting the “chaotic layer” in the 

system phase space is generated. Let us repeat [1] the case with initiating the 

following complex internal “perturbing” torque: 

 
         

      

1 2 5 6

3 4 3
sin

M t u t T u t T M u t T u t T M

M u t T u t T t T 


              

      

 (8) 

where M=const and  u   is Heaviside’s unit step function; T1 and T2 – are time-

moments of initiating and stopping piecewise-constant spin-up torque (the aim of 

this time-interval is to involve the current dynamical regime into the 

separatrix/heteroclinic area, which is liable to heteroclinic chaos);  T3 and T4 – 

are time-moments of initiating and stopping harmonic disturbing torque (the aim 

of this time-interval is to generate heteroclinic chaos); T5 and T6 – are time-

moments of initiating and stopping piecewise-constant spin-down torque (the 

aim of this time-interval is to leave the separatrix/heteroclinic area, and to spin-

down the rotor-body).  

As it was shown in details in the previous work [1], the initiation of the 

positive chaotic regime can be implemented, which results in the spatial 

reorientation of the DSSC (Figure 2). The corresponding numerical simulation 

(Figure 2) was fulfilled at the following system/motion parameters, including the 

following inertia moments [kg∙m
2
]: A1=5, C1=4, A2=15, B2=8, C2=6; the times-

moments [s]: T1=20, T2=30, T3=50, T4=80, T5=101, T6=111; initial velocities 

[rad/s]: p0=1.4, q0=0.2, r0=0.25; initial angles [rad]: θ0=1.48, φ0=1.57, ψ0=0, at 

the following parameters of perturbations: M=1.5 [kg·m
2
/s

2
]; ν=1 [1/s] and 

dimensionless ε=1. So, the modeling results clearly show the possibility of the 

implementation of the suggested method of the DSSC reorientation.  

In the next section we will develop the analogous method of the spacecraft 

chaotic reorientation basing on chaotic properties of strange chaotic attractors 

which also can be initiated in the phase space of MSSC [5, 6]. 
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Figure 2.The numerical simulation results for the attitude reorientation of DSSC basing on 

dynamical properties of the heteroclinic chaos 

3.   The method of spacecraft attitude control/reorientations based on 

chaotic properties of strange chaotic attractors 

It is well known fact that in phase spaces of dynamical systems on a par with 

regular phase trajectories many complex structures and objects can be presented, 

including perturbed split homo/heteroclinic bundles, fractal geometrical 

areas/basins, strange attractors and repellers. In this sense, certainly, dynamical 

systems for DSSC/MSSC/GS are not exceptions. The chaotic strange attractors 

in the phase space of MSSC angular (attitude) motion is e.g. shown in [5], were 

also the well-known dynamical systems (Lorenz, Sprott, Wang, Qi, Li, Chen, Lü, 

Liu, Čelikovský, Burke, Shaw, Arneodo, Coullet, etc.) are observed.  

In this section we consider the intentional creation of strange chaotic 

attractors in the dynamics of MSSC/GS for further implementation of 

corresponding chaotic properties in purposes of attitude control/reorientation.  

Here it is important to remind the mechanical structure and main properties 

of multi-spin spacecraft. The MSSC [5, 6] represents the multi-body (multi-

rotor) constructional scheme with conjugated pairs of rotors placed on the inertia 

principle axes of the main body (Figure 3). General properties of the MSSC 

attitude dynamics are connected with the internal redistribution of the angular 

momentum between the system bodies (the main body, and rotors) due to the 

internal torques action. These properties of dynamics can be applied to the 

implementation of spatial (attitude/attitude) reorientations of the MSSC and also 

to the roll-walking motions of multi-rotor walking robots [5, 6]. 
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Figure 3.   The MSSC and main coordinates systems 

3.1.   Mathematical models of the angular motion of MSSC/GS 

Basing on the works [5, 6] we can present the main equations of the MSSC 

attitude dynamics as the dynamical equations for the multi-rotor system with 6N 

rotors (Figure 3) contained into N layers on six general directions coinciding 

with the principle axes of the main body. In these equations the following 

notations are used: ω=[p, q, r]
T
 – the vector of the absolute angular velocity of 

the main body (in projections on the connected frame Cxyz); , ,A B C  are the 

general moments of inertia of the main body; ,
e e e

x y z
M M M  are the external 

torques acting on the system (in general applied to the main body); kl
  is the 

relative angular velocity of the kl-th rotor (relatively the main body); Il and Jl are 

the longitudinal and the equatorial inertia moments of the l-layer-rotor relatively 

the point O; , ,
e e e

jlx jly jlz
M M M  are external torques acting only on the jl-th rotor, 

and 
i

jl
M  is the torque from internal forces acting between the main body and the 

jl-th rotor (the internal engines torques). Then the indicated equations have the 

form [5, 6]: 
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with the addition of the relative motion equations of the rotors  1..l N : 
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Also presented equations can be rewritten in the unbalanced-gyrostat-form: 
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The summarized rotors’ internal (i) and external (e) torques are: 
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  
(14) 

Also for the kinematical description of the attitude motion of the MSSC 

main body we have to add the Euler kinematical equations (2). Let us as in the 

work [6] consider the case of the MSSC controlled attitude motion at the 

creation of the artificial torques: 

 12 34 56
; ; ;

i i i

p q r
M p M q M r    

 (15) 

 1 1 1
; ; ,

e e e

x x y y z z
M m p M m q M m r       

 (16) 

with the constant controlling terms/coefficients: 

 1 1 1
, , , , , , , , const

x y z p q r
m m m        

Hear we can underline the linear structure of internal control torques 

proportional to the angular accelerations of the main MSSC-body (15) (these 

torques are formed by the internal rotors’ engines); also the linear structure have 

external control torques applied to the main body (16) which can be formed by 

thrusters (e.g. this torques can be formed by electrically powered propulsion 

systems – this type of engines is characterized by the extremely low consumption 

of the working body (usually compressed gases and/or plasma), that corresponds 

to the practically constant mass system). Taking into account equations (12) and 

torques (15) we can obtain analytical forms for the summarized rotors’ angular 

momentums: 

 12 0 34 0 56 0
; ; ,

p q r
D p D q D r          

 (17) 

where 0 0 0
, ,    are the constants following from initial conditions. 
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3.2.   The possible synthesis of the MSSC parameters delivering the 

dynamics along strange chaotic attractors 

As it was indicated in the work [7] the natural candidates for the 

construction of dynamical systems with multi-scroll chaotic attractors are 3D 

quadratic continuous time systems given by equations 

 

2 2 2
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;
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where   30
, ,

i i i
a b c   are the constant parameters. 

 Basing on expressions (17) we can solve the linear algebraic equations (11)

relatively  , , ;p q r and implying the resignation  ; ;p x q y r z    it is 

possible to write the following correspondences for the system (18) coefficients 

 , ,
i i i

a b c  and the MSSC parameters: 
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The obtained correspondences (19) can be used for the synthesis of the control 

constants, which provide the coincidence of the MSSC dynamical system with a 

dynamical system containing a strange chaotic attractor. In other words, we have 

to find such values of constants  
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0 1 0 1 0 1
, , , , , , , , , , ,
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which deliver appropriate values of dynamical systems with strange chaotic 

attractors (at the concretized numerical values, certainly): 

 
  30

0 9
, ,

i i i i
Coeff a b c

 
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 (21) 

The correspondences (19) unfortunately cannot be considered as correct 

compatible linear algebraic equations system relative “unknown” parameters 

(20).  Also from expressions (19) the form of possible dynamical systems with 

strange chaotic attractors follows: we have to find the concretized cases of 

systems (18) with null-coefficients from the set 
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To fulfill the last conditions (22) we must limit oneself in using only the 

“natural gyroscopic systems” (e.g. in the work [6] the well-known systems with 

the Wang-Sun four-scroll chaotic attractor and with the Chen-Lee two-scroll 

chaotic attractor were presented as systems, which are correspond to conditions 

(22)). The indicated class of “natural gyroscopic systems” includes, certainly, 

dynamical systems of the angular motion of usual rigid-bodies systems, DSSC, 

MSSC and GS. 

Thus, our task now reduces to find the concrete control “unknown” 

parameters (20), which can generate one of possible strange chaotic attractors in 

the phase space of the MSSC motion. As it was realized in the previous work 

[6], we can select the one of known dynamical system with concrete coefficients 

(21) with strange chaotic attractor (it can be call as the “basic” system), and find 

the parameters (20) which provides equalities (19) exactly or approximately. 

Due to the incompatibility of systems (19) relatively the MSSC parameters (20) 

we can suggest to use the well-known first-order optimization algorithm to find a 

local minimum of a connected function using gradient descent procedure. And 

then for solving our task we will use the gradient descent procedure for the 

following quadratic function, where constants ai, bi, ci correspond to concrete 

numerical values of the selected “basic” dynamical system: 
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 0 1 0 1 0 1

2 22 2

1

0 0 0 1

22 22

0 0 0 1

1 1 2 2

, , , , , , , , , , ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

p x q y r z

yx z

qp r p

q qr p

m m m

mm m
a b c a

BA C A

b c a b
B BC A

        



  

   

  

 

      
             

            

     
             

            



         

    

2 22 2

0 0 0 1

2 3 3 3

2 2

7 8

2

9

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆˆ

qr p r

q p r p r q

r q p

c a b c
BC A C

c A B C b C A B

a B C A

   

  

     

  

      
             

             

            

     
(23) 

As it quite understandable, if the function (23) have the local zero-

minimum, then the parameters of this zero-minimum will provide the equalities 

(19), that in its turn will correspond to the natural transition of the MSSC-

equations to the “basic” dynamical system with strange attractors. Finding this 

convergent (within the limits of accuracy) zero-minimum is quite complicated 

task, and, moreover the indicated optimization algorithm can result in divergent 

iterations; and therefore not every selected “basic” dynamical system can give 

the convergent zero-minimum-solution for the MSSC control parameters (20). 

Also very important and useful is to find the possibility of searching 

“approximate” near-zero-minimums of the function (23) instead the “exact” 

zero-minimum. Such near-zero-minimums can give quite appropriate results in 

the sense of obtaining dynamical systems with strange attractors.  

So, the indicated gradient descent procedure is executed basing on following 

iterations:  

 
   1

: ;
i i i i

while X X X h X


    
 (24) 

where 0
X Control  is the initial approximation of finding parameters, and ε 

is the tolerance. And, as we mentioned above, we do not guarantee the local 

convergence of iterations (24) to the zero-minimum. 

3.3.   Initiating of new strange chaotic attractors in the MSSC phase space  

Now we can use the method from the previous section to find the MSSC 
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coefficients providing the generation of the “basic” strange chaotic attractor of 

the “basic” dynamical system, and/or to find the MSSC coefficients delivering a 

new “close to the basic” strange chaotic attractor. 

The calculation of the MSSC coefficients in cases of “basic” systems Wang-

Sun and Chen-Lee was in details considered as bright example in the work [6]; 

these cases of “basic” systems allowed to achieve the zero-minimums at the 

fulfillment of the gradient descent procedure and to initiate in the phase space of 

MSSC the corresponding four-scroll Wang-Sun attractor and two-scroll Chen-

Lee attractor. Therefore more important is to show results of generating 

coefficients for a new system with a new strange chaotic attractor – this case will 

be implemented at the converging of the gradient descent procedure to a non-

zero-minimum, or even at the non-convergent algorithm. 

Let us consider the case of the calculation of MSSC parameters with using 

the Newton-Leipnik dynamical system [8] as the “basic” system. Then, writing 

the Newton-Leipnik system in the form (18) we take the following set NL of non-

zero numerical coefficients (21):  

 1 2 9 1 2 8
0.4; 1; 10; 1; 0.4; 5; 3 0.175; 7 5NL a a a b b b c c              

As MSSC inertia moments values let us take ˆ 90,A   ˆ 70,B   
2ˆ 50[kg m ].C    

In the considered case the iterations algorithm (24) converges to the following 

non-zero local point   4.9783
final

X   at 0.0045  : 

 

0 1

0 1

0 1

-80.6893; 0; 0; -3.7243;

45.7309; 0; 0; -46.2952;

-27.7522; -9.9951; 0; 3.8934

p x

final q y

r z

m

X m

m

  

  

  

    
 

     
 

      (25) 

As the result we formally obtain the new dynamical system of the MSSC attitude 

motion (11) with summarized rotors’ angular momentums (17) and torques (16), 

(15) at the defined numerical values of parameters (25). This new dynamical 

system in the form (18) can be written as follows 

 

0.4 1.0735 10.0403 ;

0.0864 0.4 0.1118 ;

0.1750 4.7834

x x y yz

y x y xz

z z xy

   


   
    (26) 

The system (26) has the new two-scroll chaotic attractor (Figure 4). 
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Figure 4.   Chaotic attractors: 1 – the Newton-Leipnik attractor; 2 – the new attractor 

 

So, we have to finally say, the new detected above chaotic attractor can be 

initiated in the attitude dynamics of MSSC. The initiation of this chaotic attractor 

(as well as other chaotic attractors [6]) allows to implement the chaotic 

reorientation of MSSC – the corresponding angular motion time-history is 

presented at the Figure 5. 
 

 
Figure 5. The time-history of Euler angles corresponding to the chaotic attractor of the system (26) 

4.   Conclusion 

The possibility of chaotic regimes intentional initiations in attitude dynamics 

of multi-spin spacecraft and gyrostat-satellites basing on the activation of the 

homo/heteroclinic chaos and/or strange chaotic attractors was shown. Moreover, 

in this work the new simple dynamical system with the new chaotic strange 

attractor was found basing on the main dynamics of MSSC and the Newton-



 14 

Leipnik system. Considered intentional initiations of chaotic regimes can be 

applied to the attitude reorientation of DSSC/MSSC/GS in cases of extreme 

dynamical situations including accidents and failures of main attitude control 

systems, and/or in cases of cancellations of uncontrolled rotations. Also in these 

chaotic regimes it is possible to fulfill tasks of a fast random observation of 

surroundings, task of a random search of objects. 
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